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Abstract

In this paper we discuss the issue of geometric stiffening as it arises in the context of
multibody dynamics. This topic has been treated in a number of previous publications
in this journal and appears to be a debated subject. The controversy revolves primarily
around the "correct" methodology for incorporating the stiffening effect into dynamics
formulations. The main goal of this work is to present the different approaches that have
been developed for this problem through an in-depth review of several publications dealing
with this subject. This is done with the goal of contributing to a precise understanding of
the existing methodologies for modelling the stiffening effects in multibody systems. Thus,
in presenting the material we attempt to illuminate the key characteristics of the various
methods as well as as show how they relate to each other. In addition, we offer a number
of novel insights and clarifying interpretations of these schemes. The paper is completed
with a general classification and comparison of the different approaches.

1 Introduction

The issue of geometric stiffening, also referred to as dynamic stiffening, centrifugal stiffening
and foreshortening has been a topic of many recent publications dealing with the dynamics of
flexible bodies for applications to multibody systems. Kane et al. 1 first observed that the

majority of existing multibody dynamics formulations and accordingly the dynamics simulation
packages do not incorporate the geometric stiffening effect. They have attributed this flaw to
the "convenional approach" for describing the deformation of elastic bodies, which yields a set
of dynamics equations that inherently lack the geometric stiffening terms. Kane et al. proposed
an alternative approach, correcting this flaw, and applied it to develop a set of equations
for the deformation of a beam attached to a moving base.

Eke and Laskin _ took up the issue raised in Ref. 1 and investigated regimes of validity of
existing formulations with the simulation package DISCOS on a spin-up beam example. They
qualified the error in conventional approach as a "premature linearization" of the displacement
field. This was later supported by Padilla and von Flotow 3 and Banerjee and Dickens 4.

Shortly after Kane et al.'s publication, two commentaries appeared on the material
presented in Ref. 1. In particular, London s pointed out that geometric stiffening has been
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previouslyconsidered by many researchersin a number of applications.Furthermore, he
observed that severalapproaches have been employed to includethiseffectin the dynamics

equations and compiled a tablecharacterizingthe various methods. In a technicM note,6

Hanagud and Sarkarstatethat,contrarytothe claim made inRef.1,the conventionalmethod

formodellingthe kinematicsof elasticdeformation can be used.

The existingcontroversyover the nature of geometric stiffening,the debate on " the

correct"approach to model itand the seeming incongruityofthe methods used to includethe

effectin the motion equations--allof thesehave motivated us to review severalof the works

on thissubject.In doing so,we have attempted to understand preciselyhow geometric stiff-

ening isincorporatedintothe dynamics equationsin differentapproaches,what assumptions
and approximations are made in the derivation,what motivated these and whether they are

justified.This paper containsthe main resultsofour review.

Our startingpoint willbe the landmark paper by Kane et al.I and the subsequent

commentaries,s,6Followingthat,we givea thorough treatmentof the works by Likinset al.,T

Vignerons and Kaza and Kvaternik9 and a summary of the relevantmaterialfrom the pub-
licationsby Lips and Modi _° and Hughes and Fung.11 Section 4 contains the main results
from Laskin et al.,_2 Meirovitch13'14and Banerjee et al..4,1sIn reviewingthe works of these

researchers,we do not simply repeattheirderivations,nor do we includethe dynamics equa-

tionsdevelopedinthesepublications.Instead,we concentrateon the fundamental assumptions

made informulatingthe basicelements necessaryforderivingtheseequations,where the "for-
mulation" ends when the development becomes a purelymechanical process.For instance,in

the caseswhere dynamics equationsare derivedvia Hamilton's principle,we limitourselves

to statingkineticand potentialenergy functions,and do not go through the procedure of

applying the variationalprinciple.This allowsus to compare the variousapproaches based on

the fundamental physicalassumptions.

In additionto presentingthe key featuresof differentprocedures,making comparisons

and establishingrelationshipsbetween them, we alsoprovideclarificationsand givesome new

insights.We conclude the paper with a discussionin which we disclosesome of the exist-
ing misconceptions,classifythe approaches and comment on theirsuitabilityfor multibody

dynamics simulation.

2 Kane et al. and Commentaries

2.1 Main Results of Kane, Ryan and Banerjee

In Ref. 1, Kane, Ryan and Banerjee develop the dynamics equations of a general flexible beam
built into a rigid base. The base body can undergo arbitrary, but prescribed translational
and rotational motion. The generality of the beam refers to the fact that its geometric and
material properties are not assumed to be constant, but can vary along the length of the beam.
In addition, Kane et al. do not make the common assumption that the elastic and centroidal
axes coincide. As a result, their motion equations contain terms dependent on the components
of the eccentricity vector, e2 and e3.

The formulation of equations in Ref. 1 differs from many existing procedures in several re-

spects. First, it incorporates the effect of the transverse displacement on the axial displacement
in the kinematic description of the deformation. This is achieved indirectly by expressing the
distance along the deformed elastic axis as a nonlinear function of the transverse displacements
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with:

1+  ,aa/ + j da (1)

The above equation is the same as Eq. (19) of Ref. 1, where the variable s denotes "the stretch
in the beam along the elastic axis."

The second major difference relates to the choice of elastic deformations that are em-
ployed to describe kinematics of the deformed beam. The standard procedure is to use three
orthogonal elastic displacements ul, u2 and u3 to represent the displacement field in a de-
formable body. Kane et al. employ the stretch s with the transverse translations u2 and u3
as a set of generalized coordinates. Thus, when discretizing the continuous displacement field,
they discretize the stretch variable instead of the axial displacement ul. This is expressed by
Eqs. (25) and (26) of Ref. 1, which we rewrite here for convenience as:

//

--
.i=1

v

j=l

i=2,3

(2)

Accordingly, the dynamics equations based on the above premise reprsent a model for the time-
evolution of {s, u2, u3}, or rather, the corresponding discrete elastic coordinates. The "conven-
tional approach" involves discretizing the orthogonal set of elastic displacements {ul, u2, ua}

with: v

ui = Z dpijqj, i= 1,2,3 (3)
j=l

or in matrix form:

[°']u2 = u = _q (4)
U3

Kane et al. argue that in the standard procedure (3), the three elastic deformations cannot
account for the fact that every transverse displacement gives rise to an axial displacement,
because the form (3) inherently precludes such an interdependence.

The general methodology employed in Ref. 1 to derive an explicit (literal) set of motion
equations for the elastic coordinates is that presented in Kane and Levinson. 16 The procedure
requires one to construct the generalized inertia and generalized active forces. The former are
developed in Ref. 1 according to the algorithm outlined by Kane and Levinson. The generalized
active forces, which for the particular system considered result from internal forces, are derived
from the strain energy function. The expression for this function U is given in terms of the
components of the force and torque vectors which act on a cross-section of the beam (see Eq.
(51) in Ref. 1). Thus, it takes the form of a sum of six integrals, three for each of the force and
torque, where the integrand of each integral term is a quadratic function of the appropriate
load. In order to determine the generalized internal force by using Eq. (50) of Ref. 1, which
in fact is a statement of Castigliano's theorem, one needs to formulate the strain energy as a
function of the generalized coordinates. To this end, Kane et al. express each of the six loads
as a linear function of elastic deformations or their spatial derivatives.



For reasons that will become apparent in §2.4, we draw attention to one particular term
in the strain energy function. This term represents the contribution of the axial load and will
be denoted here by Up. It corresponds to the first term in Eq. (51) of ILef. 1, which we rewrite,
omitting the subscripts as:

L p2up = dx (5)

In linear analysis, one approximates the axial load as a linear function of the axial displacement

gradient with P = EA_. The expression for P given in Ref. 1 by the left Eq. (58) takes the
same form, but with the axial translation ul replaced with the stretch variable s. With that,
the axial load contribution to the strain energy function becomes:

I_oL I08'_ 2Up = -_ EA \-_zJ dx (6)

The above are what we view as the key features of the dynamics formulation for a flexible
beam attached to a moving base that has been put forward by Kane, Ryan and Banerjee. 1 In

the following two subsections, we summarize the main points of a technical comment and an
engineering note, both of which are related to Ref. 1. These appeared in two issues of the 1988
volume of the Journal of Guidance and Control, shortly after the publication of Kane et al.
Section 2 is concluded with a discussion of the two commentaries.

2.2 London's Comments

In summarizing London's comments, we have grouped them into two categories. The first one
includes comments which deal with the "qualitative" aspects of Kane, Ryan and Banerjee's
work, such as literature review. In the second category, we include comments related to the
quantitave or technical aspects of the analytical development presented in Ref. 1.

Category I. London observes that Kane et al. "create the impression that a new theory has
been discovered," refering to the theory to model foreshortening. London bases this
statement on the fact that Kane et al. do not give any references as to the origin of their

results for the nonlinear description of the kinematics of the deformed beam (primarily,

Eq. (19)in Ref. 1).

Regarding the literature review on the subject of modelling flexible beams attached to
a moving base, London's criticisms are twofold. First, he suggests that the references
in Kane et al.'s manuscript are incomplete. To be specific, they neglect to mention the
work by Lips and Modi l° on the dynamics of beams undergoing a three-axis spin, as

well as the work by Hughes and Fung, 11 which treats the problem of stability of spinning
satellites with flexible appendages. Second, London implies that many of the references
that are included have not been given a proper and/or appropriate credit. In this regard,
he particularly notes the work of Kaza and Kvaternik 9 which is classified by Kane et
al. into a group of papers "in connection with aircraft dynamics" addressing "questions
concerning tapered, twisted and rotating beams." Similar treatment is given to the works
of Likins et al. _ and Vigneron, s which are grouped under those in the field of "spacecraft

dynamics" with a "particular interest" in "the effect of vehicle elasticity on attitude
motions."

Category II. With regards to the technical merits of Kane et al.'s formulation, London draws
attention to the following four points:
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1. London questions why the authors of Ref. 1 "choose to represent the three elastic

degrees of freedom by five variables {ul, u2, u3, s, _}."

2. It is pointed out that the use of x + ul as an upper limit of the integral in Eq. (1)

(Eq. (19) in Ref. 1) creates problems in evaluating the modal integrals _ij and 71j
(Eq. (41)in Ref. 1).

3. London questions why the foreshortening is not considered during evaluation of the

strain energy.

4. It is stated that the final equations derived by Kane "are linear in terms of vibration

coordinates (but still retain higher-order spin effects) as is already the case with most
other works."

2.3 Hanagud and Sarkar's Note

Contrary to what is claimed in Ref. 1, Hanagud and Sarkar believe that the axial and transverse
motions can be treated independently with the standard discretization procedure and the
stiffening effect can be accounted for if "the nonlinear effects are properly included in the
formulation. "6

Hanagud and Sarkar present a formulation where, as in the conventional approach, they
discretize the axial displacement ul, not the stretch variable s. Hanagud and Sarkar derive
the differential equations for the corresponding discrete elastic coordinates by using the same

general methodology as employed in Ref. 1, which as they point out is sometimes referred to as
Kane's method. Similar to the development of Kane et al., they also determine the generalized
active force§ which are the elastic (internal) forces, from the strain energy function. However,
Hanagud and Sarkar formulate the strain energy as a quartic function of the spatial derivatives
of ul, u2 and u3. This is accomplished by employing the nonlinear strain-displacement rela-

tions, through which the aforementioned nonlinear effects are introduced into the formulation.
Lastly, Hanagud and Sarkar do not linearize the final equations of motion, but retain terms of
second and third order.

An important contribution of Hanagud and Sarkar's work is an observation that the
expression for the stretch variable presented by Kane et al. (Eq. (19) in Ref. 1) is inconsistent
with the rest of their development. The inconsistency results from the fact that this relation
for s is applicable if one expresses the transverse displacements u2 and u3 as a function of the
deformed coordinate X which corresponds to the axial projection of a generic point in the de-
formed configuration of the beam. (We have chosen to follow the traditional notation employed
in the theory of elasticity, where one distinguishes the deformed and undeformed coordinates
by different-case letters.) Since in their formulation, Kane et al. express the translations u2
and u3 in terms of the undeformed coordinate x (see Eq. (2)), the consistent expression for the
stretch variable is:

z + s(z, t) = f0_

The above equation, although looks different, is equivalent to Eq. (2) in Ref. 6. We also
observe that it embodies the nonlinear formulation of the strain. In (7), we have used the

notation -_I to emphasize that elastic translations must be expressed as a function of the
3¢_a

undeformed coordinate x, while a in this case is a dummy integration variable. We also point



out'a change in the upper limit of the integral from x + ul in Eq. (1) to z in Eq. (7) which, of
course, is a consequence of the transformation from deformed to undeformed axial coordinate.

2.4 Discussion of the Commentaries

In the following, we offer our opinions on the various points made in the commentaries. We
hope that these will serve to elucidate the more subtle features of the formulation proposed by
Kane et al. A couple of the issues raised in the commentaries will be further addressed in the
final section of the paper.

We agree with London in saying that when one reads the manuscript, 1 one gets an impres-
sion that its authors propose a new theory to model the deformation of a beam. Fundamentally,
the theory is not new and a number of formulations which incorporate the foreshortening effect
and the resultant stiffening of the beam during its rotation, have been previously published.
(The material presented in §3 and §4 will support this fact.) Indeed, Kane et al. refer to
some of these works, but only in a superficial and in some cases misleading manner. This
notwithstanding, we feel that the formulation developed in Ref. 1 does have a couple of novel
features. These are: (i) generality of the system modelled and (ii) use of the stretch variable as
a generalized coordinate in deriving the dynamics equations. Although we do not share Kane's
conviction that the dynamics equations must be formulated in terms of the stretch variable in
order to predict stiffening of the beam, this particular feature of their procedure provides, at
the least, an interesting alternative to the conventional approach.

Continuing with London's comments in the second category, we offer the following ob-
servations:

1. In our interpretation of the formulation, 1 the stretch s is introduced to replace the axial
displacement ul. This is made abundantly clear in section IV of Ref. 1 where s takes
place of what usually appears as ul. The variable _ is employed as a short-hand for the
combination x + ul. In this light, we do not agree with London's statement that Kane
et al. propose to use five variables to represent a three-degree-of-freedom displacement
field.

2. According to the development presented in Ref. 1, the modal integrals _ij, 7ij are by
definition time-dependent through ul = ul(x, t)in their upper limit of integration. This
implies that they must be evaluated at each time step in the numerical integration of
the motion equations. (Although that woul d certainly add to the computational cost
of the simulation, it should not pose a problem otherwise.) The situation changes,

however, if one corrects formulation in Ref. 1 in accordance with observations made
by Hanagud and Sarkar. That can be achieved by replacing the inconsistent expression
for the stretch, given by Eq. (1), with a consistent form of Eq. (7). With this correction,
the aforementioned modal integrals become independent of time and, therefore, can be

evaluated prior to the numerical integration of the motion equations.

3. This particular comment by London has motivated us to consider closely the expression
for the strain energy function employed in Ref. 1. In the process, we have singled out
the "axial" strain energy, previously denoted by Up, as the only contribution which may
possibly comprise the foreshortening effect. The following brief development shows that
indeed it does.

The function Up: as can be seen from (6), is quadratic in the spatial derivative of the

0s Thus, in order to illuminate the nature of this strain energy, we need to obtainstretch, _-_.



anexplicit expressionfor thestretchgradient.As notedpreviously,Eq.(7) providesthe
proper form for s that should be employed in Ref. 1. Abbreviating the notation, we

rewrite (7) for s with:

s(x,t)= 1+ COa} ÷ \ Oa ) Jr \ cga ] J da- x

Differentiating the above with respect to x we get:

0--;=L l+ cOx] +\cOx} +\-_x] J -1

and upon expansion of the first term, the required gradient takes the form:

[
_= [l+z--_-= +\-.g_.-x/ +\--_--=/ +\cO=),] -1

(s)

(9)

(10)

Let us now introduce the axial strain e0,z_, where the 0 subscript signifies that it refers

to the elastic axis. (Note that ul, u2 and u3 are defined in Ref. 1 as translations of points
along the elastic axis only.) The strain e0,== can be expressed in terms of the elastic
displacements with a well-established strain-displacement relation. It has the following
exact and nonlinear form:

_0,_= 0---2+_ _.o=] +_.-_/ +ko=] (11)

With the above, the stretch gradient of Eq. (10) can be succinctly written as:

cO'*= [I+ 2eo,==]'/2 - 1 (12)
cOx

Beforewe continue,itisworthwhileto pointout thatin allformulationsdealingwith the

subjectofgeometricstiffeninginthe contextofmultibody dynamics, itisalwaysassumed,

although not always stated,that the strainsare small,and specifically,e0,==<< I.
Therefore,we can make use of the Binomial Theorem to simplifyEq. (12). Retaining

the firsttwo terms in the binomial expansionwe get:

cOs (13)
cO--__ [1 + eo,==] - 1 = e0,xx

Finally, substituting for as from (13), the axial contribution to the strain energy function
employed by Kane et al. takes the form:

1/oUp = _ EA (Eo,=.)2dx (14)

with the axial strain given by the nonlinear Eq. (11).

At this point, it is appropriate to comment on the form of the strain energy employed
by Hanagud and Sarkar in their formulation (Eq. (8) in Ref. 6). Their expression can be
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derived by using Eq. (14) in conjunction with the following simplified expression for the
axial strain:

Ou, [(Ou2_ 2 (Ou3_ 2] (15) ox] j

The above form is obtained from the exact relation (11) by omitting the term--

an approximation often made in the context of moderate-deformation theories. 17 The
third- and fourth-order terms in the strain energy of Hanagud and Sarkar result from the

nonlinear terms and in the strain-displacement relation (15). It is these

terms that lead to the geometric stiffening and foreshortening of the beam.

The development presented here demonstrates that, contrary to London's comment, the

geometric nonlinearity is included in the strain energy expression given in Ref. 1. This is
not apparent because Kane et aL employ the stretch s instead of the axial translation ul
as a generalized coordinate in their formulation. As a consequence, they do not need to

expand 0_ when evaluating U so that their strain energy function remains quadratic in
the discrete generalized coordinates and does not explicitly contain higher-order terms.

We have found this comment by London somewhat bewildering. As stated in it, and as
clearly stated in Ref. 1, the equations of motion developed by Kane et al. are linear in the
elastic coordinates and incorporate the geometric stiffening. In fact, one of the crucial

points made in Ref. 1 is that the linear motion equations in other works do not contain
all of the linear terms, in particular the stiffening term. As implied by Kane et al., 1
and later stated by Eke and Laskin 2 and Padilla and yon Flotow, 3 this occurs because
of premature linearization implicit in the "conventional approach." Contrary to this, we
support Hanagud and Sarkar's view that one can obtain the stiffening effect with the
conventional approach. This is achieved by employing the nonlinear strain-displacement
relations in constructing the strain energy function. The stiffening term obtained with
this approach is a nonlinear function of elastic coordinates.

The reason why the final equations of Kane et al. are linear in elastic coordinates, but yet
include the stiffening terms lies in their choice of the stretch s as a generalized coordinate
and the fact that it includes the nonlinear contribution from transverse displacements.

As we had shown in the previous comment, it is through the use of stretch instead of axial

displacement, that Kane et al. incorporate foreshortening in their formulation, without
introducing nonlinearity explicitly into the motion equations.

3 References Contended by London

London's comments on the literature review and Kane et al.'s reply to them is, motivated us to

investigate the material presented in several of the references in question. The main objective
of this section is to summarize these findings.

3.1 Likins et al., Vigneron, and Kaza and Kvaternik

Our choice to discuss the contributions of Likins et al., _'Vigneron, s and Kaza and Kvaternik 9 in
the same section is based on several reasons. First, these articles appeared within a time-span



of four years and therefore belong to the same "era." Second, all three publications contain
formulations of the dynamics equations for a flexible beam spinning in a plane at a constant
speed. Finally, there is a logical relationship between these works, since that by Vigneron is
a comment on Likins et al., while Kaza and Kvaternlk extend Vigneron's approach to obtain
the nonlinear equations of motion of the aforementioned system.

Our presentation is not a plain copy of Refs. 7, 8 and 9, as it is structured to make
apparent the key features of the approaches taken in the three works, establish a relationship
between them, as well as identify the particular contributions of each one. Towards this
end, we present the results of these works in a common notation, which will also be employed
throughout the rest of the paper. This notation is similar to that used in Ref. 1 with one major
difference. We choose to denote the three orthogonal elastic displacements with symbols u, v
and w. Thus, u now represents the axial elastic displacement measured along the x-axis of the
reference frame, while v and w are the transverse elastic displacements. Furthermore, these

symbols are not restricted to the elastic axis, but represent elastic displacements of any point
in the beam. This convention follows that used by Kaza and Kvaternik. 9

As already mentioned, the system considered in all three pubUcations I is a uniform elastic
beam, with a symmetric cross-section, spinning at a constant angular speed _ about the z-axis
of the reference frame. This system represents a special case of that treated by Kane et al.,
defined with: w3 = ft, wl = w2 = vl = v2 = v3 = 0, e2 = e3 = 0 as well as constant geometric
and material properties. The common features of the formulations _'s'9 are listed below.

(i)

(ii)

(iii)

The dynamics equations are constructed via Hamilton's principle.

The position of a generic point located at Ix,y, z]T in the undeformed beam is given

by Ix + u,y + v,z + w] T, where v and w are functions of x and time only, that is
u(x, y, z, t) = u(x, t) and similarly for v and w. As well, the transverse displacements are
assumed constant in a cross-section, thus precluding torsional deformation.

The kinetic energy is calculated with:

v = [[[ + +w:+n (x+ +n (y+,):
P dx dydz (16)+ 212(x + u)6 - 2g_(v + v)_i]

where, like in Ref. 1, the symbol # denotes the mass per unit length of the beam and A
is the cross-sectional area. The above equation is identical to equation (6) of Likins et
al. and applies to any elastic body spinning as specified before. It can be expanded and
simplified for a beam with a symmetric cross-section to yield:

+flp / (zi_ + ui_ - viz)dz+lPft:Llz2A (17)

where we have used the standard definition Iz = ff y2 dy dz.

(iv) The potential energy is calculated with

E///U = _ (_)2 dx dy dz
(18)

l Likins et ai. also consider "Axial Beams."



wherecz_ denotes the axial strain at any point in the beam, and is given by a nonlinear

expression:

(v) The dynamics equations are formulated for the continuous displacement variables, and
accordingly take the form of partial differential equations.

There are two major differences between formulations presented in Refs. 7, 8 and 9. The
first one relates to the form of the assumed axial displacement field. Likins et al. "expand"

the axial displacement u with:
Ov Ow

= = uo- - (20)

Vigneron, followed by Kaza and Kvaternik adopt a different form. Their axial displacement is
given by Eqs. (2) and (la) in Refs. 8 and 9 respectively, which we write as:

Ov Ow

u = Us -Y-_x - z-_z - u! (21)

In the above, u/ is the "displacement associated with the foreshortening effect", s In both
references, this component of the axial displacement is specified as an explicit function of the
transverse displacements:

u/ = u:(z,t) = ½ + \ Oz ) J dz (22)

We note that expression (22) is a second-order approximation for the foreshortening of the
beam. Clearly, u! corresponds to the axial displacement which results from the transverse
deformation. Comparing Eqs. (20) and (21), we observe that Uo must equal u, - u I and hence
u0 and u, represent different physical quantities. We have employed the subscript s in u, to

signify that it corresponds to axial displacement resulting strictly from extension or stretch of
the elastic axis. By comparison, Uo represents the total axial displacement on the elastic axis
which may be due to both stretch and bending.

The second difference between the derivations of Likins et al., Vigneron, and Kaza and

Kvaternik lies in the approximations made in deriving the final equations of motion for the
elastic coordinates Uo or u,, v and w. To be specific, these are approximations made in

formulating kinetic and strain energies that are subsequently used to construct the Lagrangian

of the system.

Likins et aI. substitute their expansion for u from Eq. (20) into the kinetic and strain
energy expressions (17) and (18), the latter combined with (19), thereby reformulating T and
U in terms of u0, v and w. They simplify the results by making the following assumptions.

I. The in-plane deformation is ignored based on the argument that it is present only because
of the Poisson effect.

(a) This amounts to dropping all terms in kinetic energy T which involve v or its
derivatives.
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(b) The strain energy U is derived by omitting in the definition (19) for the

strain.

II. Likins et al. neglect all terms that involve u0 and _0 in T, thus effectively eliminating

the axial equation of motion from the model.

III. They retain only one term in the strain energy U among the additional third- and fourth-
order terms which arise from the nonlinearities in the strain-displacement relation.

With the above assumptions, the kinetic and potential energy functions take the form:

// 1)T = !p _b_dx+pfl2L Iz+ L 2 (23)
2

EIZ foL lO2w_ EA foLOUo (OW_2u - 2 \ox } (24)

where in accordance with the assumption II above, we have dropped the term in the strain

energy which involves u0 only. These correspond to Eqs. (39) and (45) in Ref. 7. Note, that
the second term in (23) includes the rotary inertia contribution. Being constant, it does not
contribute to the motion equation for w. Also, the second term in (24) is the additional term
mentioned in III and is of third order. It represents the coupling between axial and transverse

displacements which leads to the stiffening of the beam in bending. This term is identical to
the third-order term in the strain energy function of Hanagud and Sarkar.

At this point in their development, Likins et aL establish a connection between their
approach, as we have just outlined, and "the textbook derivation for the transverse vibrations
of beams subject to an external axial force P." As noted by them, the axial load to first

approximation is given by:

so that Eq. (24) can be rewritten as:

p = EA_-_x (25)

(26)

To proceed with the application of Hamilton's variational principle, Likins et al. assume that
P is time-independent and can be approximated by its steady-state value. In fact, for the
particular problem of a beam rotating at a constant speed, the axial load P is the centrifugal
load on the beam. Furthermore, since the latter is a known function of the prescribed D, P
can be calculated with:

P(z) = Ipfl2rL: x2) (27)x --

With equations (23), (26) and (27), Likins et al. derive the motion equation for the elastic
displacement w. Due to the assumptions made in evaluating the strain energy and the axial
load P (Eqs. (24), (25) and (27)), geometric stiffening appears as a linear term in this equation.

As a final comment on Ref. 7, we note that in section titled "Finite-Element Model"

Likins et al. explicitly include a term that represents "modifications of structural stiffness due
to spin-induced loads on the structure in its steady state (the so-called "geometric stiffness")."
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Letusnowproceedwith the developments presented by Vigneron, and Kaza and Kvater-
nik. As we had already mentioned, both derivations are premised on expansion (21) for the
axial displacement. As well, the kinetic energy is constructed by ignoring the effects of rotary

, ya,, z___z),inertia. This can be achieved by neglecting the "off-elastlc-axis" contribution, _- _ -

in the expression for u and dropping the last (Iz-) term in Eq. (17). Then, kinetic energy can
be written as a function of us, v, w and u/with:

T _. __p _2 +/,2 + w2 _ 2/_,_1 + dz

t2_ foL ( 2 V 2 [2xuy] 2u,uy) dx+-TP x2 + uo + + u2..._l+ 2xu, - -

fo (28)

Recall that according to (22), the foreshortening u! is a quadratic function of the transverse
displacement gradients and, therefore, the above expression for T includes terms of third and
fourth order. These terms are underlined in (28) with single and double lines, respectively.
We have also singled out by enclosing in square brackets the term which is linear in u I. This
term gives rise to the stiffening effect in the motion equation. We also emphasize that Eq. (28)
originates from the same expression for the kinetic energy (Eq. (17)) as used by Likins et al.
The higher order terms in it are a consequence of dividing the axial displacement u0 into two
components, us and u I, and explicitly assuming a second-order form for the latter.

Vigneron approximates T by keeping only second-order terms in (28) (including the
term in the square brackets) as well as, setting the axial displacement uo and its derivatives
to zero. The latter approximation corresponds to inextensibility assumption, which implies
that the beam is modelled as axially rigid. 9 Note, that dropping the u,-terms in Vigneron's
formulation is not equivalent to dropping the uo- terms in Likins et al.'s formulation, although
in both cases this achieves elimination of the independent axial equation of motion. Vigneron's

approximation yields:

_0 L _2 [L _0L (29)

which, without the last term, corresponds to equation (9) of his paper. Unlike Vigneron,
Kaza and Kvaternik do not make the inextensibility assumption and therefore keep the axial

equation of motion in their final model. They also retain third-order terms in (28). The result
is given by Eq. (7) in Ref. 9 which is identical to our Eq. (28) without the double-underlined
terms.

To determine the strain energy according to (18), Vigneron and Kaza and Kvaternik
first evaluate the strain e_x of (19) by substituting for the axial displacement u from (21) in
conjunction with (22). Upon dropping the third- and fourth-order terms, this produces the
following second-order expression for the axial strain:

E_x = Oz Oz + _ Ox + \-_z / + \ Ox / J (30)

where we have intentionally separated the contribution of u I. However, according to (22), we
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have

auf_ [lOv (31)

so that (30) is simplified to:

0 (u, _ y_o__ ,o_o_j+ ½ 0 u. - y_ - o_ j (32)
exx = Ox Ox

OT

0_o 02v 02_ [0_. 0:, 02w]2
_ = _ - %-_ - _-_ + ½Lox - %-_ - %-_ ] (33)

The above is equivalent to Eq. (5) in Ref. 8 and Eq. (4) in Ref. 9, Mthough neither publication
includes a description of the intermediate step (30). It is interesting to note that ex_ evaluated
with (32) without the second-order term, can be derived from the axial strain of (19) without

the term, but with the "transverse" nonlinear terms. As is demonstrated by Eq. (30),

the latter is cancelled when foreshortening u! is explicitly defined in the axial displacement u,
which results in a linear expression for the strain. Vigneron's strain energy can be constructed

by using this linearized form of (32), since he retains only quadratic terms in the strain energy.
In fact, the strain energy function given in Ref. 8 has a standard form used in the linear theory
of elasticity. Kaza and Kvaternik formulate their strain energy with the axial strain as given

by (32), but drop the resultant fourth-order terms.

Because of the differences in the approximations made, Vigneron and Kaza and Kvaternik
derive different sets of motion equations. Vigneron obtains two linear equations of motion for
the elastic variables v and w (Eqs. (10) and i11) in Ref. 8), the latter being identical to the
equation derived by Likins et al. Kaza and Kvaternik present a set of nonlinear dynamics
equations for the three elastic deformations, u,,v and w (Eqs. 8(a,b,c) in Ref. 9). They are
nonlinear, in particular second-order, because Kaza and Kvaternik retain third-order terms in
their kinetic and strain energies. It is important to emphasize, that the term responsible for
the stiffening of the beam derived in Refs. 8 and 9 is a first-order term and appears via kinetic
energy. This occurs because of the particular form assumed for the axial displacement (Eq.
(21)) as well as, the expression adopted for the foreshortening (Eq. (22).) If, as is done by
Likins et al., 7 one does not explicitly identify u/in the axial displacement, then the stiffening

appears in the motion equations through the strain energy and is fundamentally a nonlinear
term.

To conclude this section, we draw attention to some of the observations made by Kaza and
Kvaternik. They identify four different approaches for deriving linear or nonlinear equations of
motion. They are: (1) "the effective applied load artifice;" (2) the use of Newton's second law
applied to the deformed configuration; (3) an approach in which nonlinear strain-displacement
relations and a first-degree displacement field are used; (4) Vigneron's approach which uses
nonlinear strain-displacement relations and a second-degree displacement field. Kaza and
Kvaternik show that all four appraches "make use of geometric nonlinear theory of elasticity
either implicitly or explicitly." They state that "for developing the equations of motion for a
rotating beam, "the geometric nonlinear theory is necessary to obtain even the correct linear
equations." In their paper, Kaza and Kvaternik also discuss whether foreshortening must
be explicitly included in the axial displacement field. They conclude that although it is not
necessary, the approaches where the foreshortening effect is accounted for otherwise, require

special considerations. __
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3.2 Lips and Modi, Hughes and Fung

Lips and Modi investigate the dynamics of satellite systems composed of a central rigid body
with flexible appendages. The base body is allowed to undergo general rotational motion and
therefore, the dynamics model includes the rotational rigid-body equations. To illustrate the
procedure for modelling deformation of appendages, Lips and Modi present an explicit form
of the elastic equations for a rotating beam. In their treatment of this system, they take into

account: (i) the offset between the attachment point of the appendage and the center of mass
of the rigid body; (ii) variable flexural rigidity which subsumes variable modulus of elasticity
and cross-sectional area; (iii) variable density. The basic assumptions made in deriving the
equations for elastic displacements are similar to those made by Kaza and Kvaternik. 9 In
particular, Lips and Modi explicitly separate the foreshortening component from what they
refer to as the oscillation component in the assumed form of the axial displacement. As well,
the kinetic and potential energy functions employed to construct the Lagrangian contain terms
up to third order.

The main subject of the work by Hughes and Fung n is the stability of spinning satellites
with long flexible appendages. Therefore, they formulate the dynamics equations with a view
to addressing this issue. The system is modelled as a spinning rigid body with appended
beams. The rigid-body equations are formulated for small perturbations from the nominal
spin configuration. The development of the elastic motion equations presented in Ref. 11
is different from the previously considered works in two respects. First, Hughes and Fung
employ deformed coordinates to describe the kinematics of the deformed beam, a fact which
they do not state explicitly. Thus, the position of a point on the elastic axis is defined by
[X, v, w] T where X = X(t), v = v(X, t) and w = w(X, t). (Note, the corresponding undeformed
description is [x + u, v, w] T where u = u(x, t), etc.) Another distinct feature of Hughes and
Fung's formulation is that they evaluate the kinetic and potential energies by integrating the
respective appropriate integrands over the volume, which in the case of a slender beam reduces
to the arc length _, of the deformed configuration. Thus, the energy functions are defined by
means of the line integral f(.)d_. In general, the integration necessary to determine kinetic
and potential energies of an elastic body can be performed over the deformed or undeformed
configurations. However, the former is the standard choice when the kinematic description is
given in terms of the deformed coordinates. (This representation corresponds to the Eulerian
or spatial description of the problem.)

Hughes and Fung incorporate the geometric nonlinearity into their formulation by ex-
pressing the differential arc length dg with

dg = _/l + v '2 + w '2 dX (34)

The prime in the above denotes differentiation with respect to the deformed coordinate X. We
note that Eq. (34) is equivalent to Eq. (4) of Hanagud and Sarkar. 6 It defines the distance along
the beam as a function of the transverse displacement gradients, when these are expressed in
terms of the deformed coordinates. Hence, Eq. (34) is also equivalent to Eq. (1) of this paper,
with .i = x + s. To simplify the derivation, Hughes and Fung use a second-order approximation
of d,i so that

/0 L /0L(.) d_ = (.) dX + ½ (.) + dX (35)

where L* denotes the projection of the tip on the axial coordinate axis. We also note that by

using L in the upper limit of the integral f(.)dg, Hughes and Fung implicitly assume that the
beam is inextensible.
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The kinetic and potential energies derived in Ref. 11 contain second-order terms only.
That, combined with the inextensibillty assumption makes the formulation of Hughes and Fung
similar to Vigneron's. In fact, the kinetic energy of a single beam rotating at a nominal speed,
deduced from Eq. (9) of their paper, is equivalent to Vigneron's kinetic energy given by our

Eq. (29). The form of the strain energy function is also the same.

This completes our overview of the publications disputed in London's and Kane et al.'s
commentaries. TM It is clear that these works incorporate geometric stiffening into the dynamics

equations of a rotating beam, although through different approaches. A discussion of these
will be given in §6 of the paper. At this point, we only note that they all account for the
coupling between the transverse and axial deformations. Indeed, it is exactly this phenomenon
that causes stiffening of an elastic body under certain conditions. The differences between
the approaches lie in what we view as the mechanism for introducing the coupling effect into
the formulation and accordingly, the stage in the derivation at which it is introduced. In
the following two sections of the paper we discuss some of the other approaches that have
been employed to account for the geometric stiffening in the dynamics equations of multibody

systems.

4 Laskin et al., Meirovitch, Banerjee et aI.

4.1 Laskin et al.

Similar to Vigneron, Laskin et al. 12 assume a form for the axial displacement u in which the
displacement of points along the elastic axis, u0, is divided into two parts. We rewrite their
Eq. (6) as:

Ov Ow
u = Uq, + ut - Y-_x - z-_z (36)

where they refer to u_, (v0 in Ref. 12) as a quasi-steady component and ut (their v*) as a
transient component that accounts for longitudinal vibrations. They justify this arrangement
by arguing that it allows one to consider ut as a small, more precisely, infinitesimally small
displacement which is of the order of the transverse displacements v and w. The quasi-steady

component uq, may be comparatively large.

To discretize the elastic deformation field, Laskin et al. use modal expansion similar in

form to (3) but written for the transient axial displacement ut rather then u0 (ul in (3)). By
doing so, they implicitly choose ut as a generalized coordinate in their formulation. Laskin et
al. explain this choice by saying that because nt is small, its modal coordinates can also be
regarded as small. By constrast, if one discretizes u0 = uq, + nt, its modal expansion cannot
adequately account for both large (uq,) and small (ut) components without having to include

a large number of terms in the expansion.

Laskin et al. employ Kane's method to derive the motion equation of the beam. Thus,
the next step in the formulation is to develop the generalized inertia and active forces. Starting
with the latter, they consider two contributions--the elastic forces and the controller forces.

In keeping with the subject of this paper, discussion is limited to Laskin et al.'s derivation of
the generalized elastic forces.

Let us recall that Kane et al., and Hanagud and Sarkar derive the elastic force from the
strain energy function. Laskin et al. take a different approach and express the elastic force
F as a function of the stresses in the beam. This is actually a traditional way of writing the
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elasticforcecontributionto theequilibriumequations of the theory of elasticity. As pointed

out, 12 one can express F in linear elasticity with:

F = $7. a (37)

where _ is the stress tensor. We note that this form is Mso valid in nonlinear theory, provided
the divergence operator is defined with respect to the deformed coordinates and the strains
are small. If V is defined with respect to the undeformed coordinates, then Eq. (37) must be
modified to take into accout the nonlinear nature of the deformation gradient. The resultant

expresssion for F is given by Eq. (21) in Ref. 12 which we do not repeat here. In agreement
with Kaza and Kvaternik's comments on the Newton's second law approach, we point out that
this form allows for arbitrary rotations and imp]idtly assumes nonlinear strain-displacement
relations.

Since the generalized elastic forces given by (22)-(25) 12 axe expressed in terms of the
generalized coordinates, Laskin et al. must take an intermediate step of substituting for the
stresses in their (21) from stress-strain and then strain-displacement relations, in order to
reformulate F in terms of uq_, ut, v and w. What is most notable about their approach is
that, by using the "nonlinear" relation for F in terms of the stresses, they are able to derive the
geometric stiffening component of elastic forces with a linear form of the strain-displacement
relations. Laskin et al. emphasize that if one were to use strain energy to derive the elastic
forces F, one would have to retain nonlinear terms in the strain-displacement relations. To add
to their interpretation of this "paradoxical situation", we offer this observation. The nonlinear
terms in the strain-displacement relations give rise to third- and fourth-order terms in the

strain energy. As was shown in §3.1, it is the third-order terms that are responsible for what is
usually referred to as geometric stiffening. (In fact, the fourth-order terms also contribute to
stiffening of the beam in bending.) Since the "nonlinear" formulation of F in terms of stresses
is one-order higher then the "linear" one, it essentially provides a mechanism for incorporating
only third-order terms in the strain energy.

We note that geometric stiffening is represented by Gij- and ai0- terms in Eqs. (23)-

(25) of Ref. 12. Although these are linear in the discrete generalized coordinates, they are
also dependent on the spatial derivative of the quasi-steady axial displacement uq_ (see the

definitions of Gii and ai0 on p. 515 of Ref. 12, with v0 = uq_).

Derivation of the generalized inertia forces 12 is similar to the procedure in Ref. 1 with
the main difference being the addition of six rigid generalized inertia forces. These appear
because the rigid-body motion of the beam is not prescribed, but is unknown. Accordingly,
the final equation of motion include six equations for the position and orientation of the floating
reference frame and the differential equations for the discrete elastic coordinates. They are

explicitly dependent on uq,, and therefore require this axial displacement as an input.

Laskin et al. apply their dynamics equations to a number of special cases. They specify

uq, as the stretch that would occur if the beam were executing its nominal or intended motion.
This stretch is defined as a solution of a linear second-order differential equation which we

deduce from examples discussed in Ref. 12 to be:

EA O2Uq8 OP
Ot2 = Ox = p (38)

Here, P is nominal axial load on the beam and we have introduced the bymbol p to denote
the axial load density. To generalize this Scheme for the case of general rotational motions,
Laskin et al. propose to approximate p by the axial component of the centripetal acceleration
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(multipliedby anappropriateinertia) of a point on the elastic axis of the beam. This yields,
in accordance with Eq. (78) in Ref. 12:

(39)

It is suggested that the above should provide a good approximation for the steady-state axial
load in the case of rotational motions at low angular acceleration rates. Moreover, it allows
for a closed-form solution of (38) for Uqs which can then be used as an input to their dynamics
model.

To complete this section, we observe that Eq. (36) is analogous to (21) employed by
Vigneron and Kaza and Kvaternik in their formulations, with the correspondence u! = -uq,
and u_ = ut. The term "quasi-steady" used by Laskin et al. to qualify foreshortening can be
interpreted to reflect the fact that this axial displacement is present even when there is no
axial vibration, and furthermore, it exists even under static loading. Unlike what is done in
Refs. 8 and 9, Laskin et al. do not substitute for Uqs in terms of v and w as in (22), nor any
other expression. As a consequence, uq_ appears in both generalized inertia and elastic forces.

4.2 Meirovitch

In his 1967 book, Meirovitch la includes a section on the effect of axial forces in the bending
vibration of a bar, which as he states, cannot be ignored in some cases. In this section,
Meirovitch derives an equation of motion for the transverse displacement of the beam by
means of extended Hamilton's principle. Thus, expressions for kinetic energy T and work
function W are developed. The former takes the simple form used in planar bending vibration
problems without the axial force. Rewritten in our notation, T specified in Ref. 13 is:

T = ½ p(x) \ -fit dx (40)

In evaluating the work function, he proposes to include the effect of the bending moment, the
transverse (external) load and axial force. The first two are formulated in the same way as for
the case without the axial force. To determine the "axial" work, the change in the horizontal
projection of an element d_ is calculated. This differential of the foreshortening is expressed
with:

d_ - dx = 1 + \Ox] -_z dr (41)

 pprox m t on os.,t f om t.o   nom, loxp ° ,o,or +
Then, the work done by the axial force is:

Wp -½ P(x,t) -_x dx (42)

It is worth to point out that in adopting the above formulation, Meirovitch makes a tacit
assumption that the axial force is given as a known function of x and t.

In the more recent publication, TM Meirovitch derives a set of motion equations for a

general flexible body in general motion. These equations are written in terms of the rigid-
body quasi-coordinates and the continuous elastic coordinates u, v and w. Their application
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to asystemmadeupof a rigid hub and a beam-like flexible appendage is illustrated. He begins

by assuming that the axial displacement can be ignored and therefore sets u = 0 apriori. The
kinetic energy is derived in the standard manner and contains terms that are of second degree
in the elastic variables. The strain energy includes the standard second-order contributions due

to bending in two directions as well as the contribution due to "shortening of the projection."
The latter is expressed as

Up = ½ p((, t) d¢ -_x + \ Ox J J dz (43)

where p(x, t) is the axial component of the internal force density. We note that (43) can be
directly compared to (42).

Meirovitch proposes to determine the force density p from the motion equation for the
axial displacement u, which as we had mentioned is excluded from the dynamics model. Thus,
he defines p as a sum of the terms in the u-equation, omitting terms that involve elastic
displacements, as well as the control force density. The resultant expression for p is given by
Eq. (29) in Ref. 14, which we rewrite here as:

At this point, let us compare the above expression for the internal axial force density which is
employed by Meirovitch to evaluate the strain energy due to the shortening of the beam with
the corresponding expression of Laskin et al., which they use to determine the quasi-steady
component of the axial displacement. We recall that the expression for p proposed in Ref. 12,
as given by Eq. (39) of this paper, originates from inertial acceleration of a mass element on
the beam's elastic axis. In fact, it is defined as the centripetal component of the acceleration

evaluated with u = Uq°. It can be shown that Meirovitch's expression for p can also be derived
from the inertial acceleration distribution, but neglecting the elastic contributions. Indeed,

this is not surprising since a motion equation in the absence of external forces is essentially a
linear homogeneous relation for the inertial acceleration. Thus, the "centripetal component"
of p, given by px (_ + _23) in Eq. (44), is identical to p of Eq. (39) if one drops Uqs. Finally,
by comparing (44) to (39), we observe that Laskin et al.'s approximation for the axial force
density should apply when the translational velocity and acceleration are small relative to the
angular velocity, in addition to the conditions stated in Ref. 12.

4.3 Banerjee et al.

Banerjee and Dickens 4 present a formulation for the dynamics of an arbitrary flexible body
in large rigid-body motion. The formulation is based on the standard description of the
deformation field where the elastic translations u, v and w are discretized by means of a modal

expansion. The equations of motion are derived by employing the same general methodology
as in Refs. 1 and 6. Therefore, as was done in reviewing other works, the following analysis
focuses on the procedure to derive the stiffening terms only.

Banerjee and Dickens introduce the notion of "motion stiffness" as a special case of the

geometric stiffness caused by the inertia loading on the body due to its large rigid motion. As
is noted by Banerjee and Lemak, 15 this motion-induced stiffness has its origin in the strain

energy term,

/ENLT_ dV (45)UNL
d
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where a and e_L are 6xl columns. One can view UNL aS the "nonlinear" part of U, since it
arises from the nonlinear terms in the strain-displacement relations. These are represented in

(45) by ENL, while ¢r represents the state stress in the body.

The key to the method proposed Ref. 4 is the observation that the stress state of the
deformable body undergoing large translations and rotations results from the inertia loading
on it. With that, they determine the distributions of the inertia force and torque in the body
from the inertial linear and angular accelerations, respectively, in accordance with Newton's
Second Law and Euler equations. In applying this procedure, they neglect elaStic terms in
the velocity and acceleration distributions. Thus, the resultant inertia loads are expressed aS
functions of rigid velocities and accelerations.

In the next step of their development, Banerjee and Dickens rewrite the inertia load as a
product of a particular matrix and a column vector. For the inertia force, the matrix is 3x12 and
is dependent on the spatial coordinates, x, y and z. The column vector contains 12 parameters
Ai, i - 1,..., 12, which are dependent strictly on the velocities and accelerations of the body.
The inertia torque is factorized into a constant 3x9 matrix and a time-dependent 9xl column
vector of A;, i = 13,...,21, which are also functions of rigid velocities and accelerations.
Although not stated in Ref. 4, the motivation for this "factorization" is to separate the time-
dependent component of the inertia forces from the space-dependent or constant part. By
doing so, Banerjee and Dickens are able to construct the geometric stiffness term in the motion
equations in two stages. The first stage produces 21 geometric stiffness matrices denoted by
S(0. 4 These can he assembled with the standard finite-element procedure from the constant or

space-dependent matrix factors of the inertia loads, prior to evaluation of the motion equations.
The second stage involves calculating the geometric stiffness term from S (i), Ai and the discrete
elastic coordinates.

Let us now comment on the relationship between the approach of Banerjee and Dickens
and the other methods. First, we observe that the "nonlinear" strain energy of Eq. (45) is
"exact" in the context of small strain deformation. Moreover, it can be rewritten in terms

of displacement variables if one expresses stresses in terms of strains and then substitutes for
strains in terms of displacements. Following this procedure, one will obtain UNL in the form
of third- and fourth-order terms in the displacement gradients. These were mentioned in our

discussion of Hanagud and Sarkar's work.

It can be shown that Banerjee and Dickens' expression for the axial inertia force is
equivalent to Meirovitch's axial component of the internal force density. The latter is given by

our Eq. (44) and the former can be obtained from Eqs. (28) and (29) of Ref. 4. Substituting
for xl -- x, x2 = y = 0, x3 - z = 0 and ui -- vi, ui+3 - wi for i = 1,...,3, the axial inertia

force f_ of Banerjee and Dickens takes the form:

f_ = - [A1 + xA4] dm

Since Meirovitch's internal force density must be interpreted as the internal force per unit

length, the equivalence between (46) and (44) follows if one substitutes for dm with p dx.
Then, we have

f_ = p dx (47)

where p is as defined by Meirovitch (Eq. (44)). Furthermore, the axial stress in the beam is

= p (48)
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and if the nonlinear part of the axial strain (19) is simplified to

[(0.),(0o) 1 (49)

Eq. (45) applied to the beam reduces to:

UNL = /ENL,_axz dV

[ioo (50)

The above, which we derived from UNL of Ref. 4 is identical to Meirovitch's strain energy due
to shortening of the projection. In this light we propose to interpret Meirovitch's formulation
of the strain energy due to shortening of an elastic beam as a particular application of Banerjee
and Dickens' formulation.

To conclude this section, we would like to draw attention to a fundamental approximation
made in the development of Banerjee and Dickens. It is that the stresses which contribute to

stiffening of the body are only those that are caused by the inertia loading. We believe that the
stress in (45) must represent the complete stress state in the body which arises from the total
loads--inertia and external. Indeed, only then can Eq. (45) be consistent with the general
formulation of the strain energy. The approximation for tr suggested in Ref. 4 is certainly
valid in the absence of external forces on the body. However, it may not be appropriate for

multibody systems in which each body is acted upon by the "external" (to it) interbody forces,
even in the absence of external forces on the whole system.

5 Discussion

Based on our review, we propose classification of the different approaches to model geometric

stiffening according to these two criteria: (i) kinematic description of the deformation field
(criterion OF); (ii) the formulation of the strain energy function (criterion SE). We feel that
these represent two most general criteria that can fully characterize a particular approach. The
first one is related to the assumed displacement field, which in turn determines the generalized
coordinates employed in deriving the motion equations. The second criterion defines the form
of the elastic force term in the motion equations.

According to each criterion, we have identified the following possible cases.

Criterion DF. It is suggested that the deformation field can be described by any of the
following sets of variables:

OF-l: Three independent elastic translations (u,v,w}. This description is employed by
Likins et al., Hanagud and Sarkar, Meirovitch, and Banerjee et al.

DF-2: Three independent elastic translations (u_,v, w}, where recall us is the axial dis-

placement which results strictly from the stretching of the deformable body. This
description is used by Vigneron, Kaza and Kvaternik, Lips and Modi, and Laskin
et al.
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DF-3:Three independentbut non-orthogonaielastic deformations {s,v,w} where s de-
notes the stretch. These coordinates are employed by Kane et al.

Criterion SE. We distinguish two basic formulations of the strain energy:

SE-I: The total strain energy is formulated as a function of strains (or displacements)
only, where strains are defined with the nonlinear strain-displacement relations.
This formulation is employed by Likins et al., Vigneron, Kaza and Kvaternik, Lips
and Modi and Hanagud and Sarkar as well as, Hughes and Fung, and Kane et al.
It can be viewed as a displacement formulation.

51:-2: The strain energy is subdivided into a "standard linear" contribution and a "nonlin-
ear" part, where the latter is constructed from the stresses or forces in the body and
the nonlinear part of strain. This formulation is used by Meirovitch, and Banerjee
et aL and can be considered as a force formulation.

Note that Laskin et al. do not compute the strain energy, but derive the elastic forces

directly from the stress state. However, since they eventually reformulate these in terms
of strains, their method is fundamentally a displacement formulation.

Let us comment on the three options for the kinematic description of the deformation
field.

DF-1. The set {u,v, w} is the standard set of elastic displacements used in both linear and
nonlinear theories of elasticity as well as, structural analysis. It requires no apriori
decisions on the foreshortening part of u and in that sense is general.

Since u, v and w represent deformations along three orthogonal axes, they clearly rep-
resent independent degrees of freedom. However, contrary to what has been previously
stated, that does not preclude the fact that part of u, in particular, the foreshortening
component, is dependent on v and w. The total axial displacement will remain an in-
dependent variable as long as it includes the axial displacement u,. Furthermore, it is
not necessary to either separate u into these two components, or to explicitly account
for the coupling between the axial and transverse displacements. In addition, we believe
that discretizing u with a standard expansion does not imply "premature linearization."
To support this point, let us consider the foreshortening part of u, which for the present
purpose we simplify to:

f[ 2u! = _ \Ox] dx (51)

If the transverse deformation v is expanded as in (3), then upon substitution, u I becomes:

u, = ½ _-_ _ [fo z \(O¢2J(x)_Ox] (O¢_x)) dx] qj(t)qk(t) (52)
j=l k=l

The above clearly represents a summation of terms ¢l,i(x) ql,i(t) where ql,i(t) = qj (t) qk(t)
and the space-dependent basis functions are defined accordingly. This summation is of
the same form as the standard expansion for u.

As exemplified by the formulations of Likins et al. and Hanagud and Sarkar, geometric
stiffening can be modelled with this option, provided one incorporates the nonlinear
strain-displacement relations in the evaluation of strain energy and, hence, the elastic
forces.
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DF-2.

DF-3.

In this case, the foreshortening component of u is explicitly separated from u, in the

axial displacement field. It may be specified in terms of v and w or left as a parameter
to be defined by the user. Either case, however, involves making an approximation for

ul, although in the first option it is "known" and quantified prior to deriving the motion
equations. Recall that Laskin et al. have argued in favor of this option based on their
claim that displacements us, v and w are of the same order, while u I is comparatively
large. In response to this statement, we Would like to draw attention to the results
presented in Ref. 6, where Hanagud and Sarkar display the time-histories of axial and
transverse displacements from a simulation of a beam spin-up problem. As can be seen
from Figures 2a and 2b in Ref. 6, the axial deformation uo = us - u! is almost two orders
of magnitude smaller than the transverse displacement v. Therefore, us cannot be of the
same order as v, nor can ul be significantly larger than v.

Employment of the stretch variable is unconventional, and certainly is not a common
choice, if made at all. The main advantage of using this variable instead of u is that
the strain energy retains its ("linear") quadratic form. However, the resulting expression
for kinetic energy (or generalized inertia forces) is more complicated than that based on
DF-1 and DF-2 descriptions.

As was demonstrated in the previous sections (at least we hope it was), it is a particular
combination of the coordinates and the strain energy formulation that determines how the
geometric stiffening is incorporated into the motion equations as well as, what form it appears
in. Thus, we will now comment on the two strain energy formulations taken in combination
with the different DF options and point out some of the advantages and/or disadvantages of

the resulting approaches.

The main advantage of the SE-1 formulation of the strain energy for any description
of the deformation field is that one is not required to make any additional assumptions or

approximations.

SE-1/DF-1.

SE-1/DF-2.

In this approach, taken by Hanagud and Sarkar, the stiffening term appears in the motion

equations through the strain energy and is a nonlinear function of elastic coordinates. In
particular, it can be factored into an (elastic)coordinate-dependent second-order stiffness
matrix and a column vector of elastic coordinates.

As pointed out by Banerjee and Lemak, evaluation of this stiffness term requires that
the stiffness matrix be updated at each time step in the simulation, which may be com-

putationally costly. However, the update does not involve iterations, but is a simple
functional evaluation. It should also be pointed out that this approach requires that the

axial elastic equation be included in the dynamics model. This is likely to have an ad-
verse effect on the computational efficiency of the simulation, since the axial deformation

is usually a high-frequency component.

Finally, we note that the present method corresponds to the third approach identified
by Kaza and Kvaternik and as they comment is "the one usually employed for a general
three-dimensional rotating body." However, contrary to Kaza and Kvaternik's conclu-
sion, we believe that it does not require special consideration, but is the most general.
Moreover, this approach can be employed to extend the existing "small" deflection dy-
namics formulations to incorporate "large" deflection theories.

With this approach, the foreshortening term is always present in the kinetic energy
expression and may or may not appear in the strain energy, depending on the additional
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SE-I/DF-3.

approximations made. _In the simplest case, as in Vigneron's formulation, the resultant
stiffening term takes a linear form.

This method of determining the stiffening term allows one the option of dropping the
axial deformation from the model--not a trivial advantage from the computational point
of view. However, it may be less accurate than the previous method, because of the
approximation made in assuming a form for the foreshortening displacement.

This approach produces a linear geometric stiffening term via kinetic energy (or gen-
eralized inertia force). Compared to the SE-I/DF-1 option, it can be just as accurate,
but not as general since the stretch variable can be defined only for a particular type of
elastic bodies.

As was shown in §4.3, the SE-) formulation of the strain energy requires an approximation
for the stress field in the body, and hence, in contrast to SE-1, is inherently approximate.
Among the works presented in this paper, this formulation has only been used with the DF-1
description of the deformation field. In this case, the geometric stiffening term results from the
"nonlinear" strain energy, as in Refs. 4, 15 and 14. With appropriate assumptions, it is linear
in elastic variables, but involves rigid-body accelerations and velocities. As for its efficiency,
the algorithm presented in Ref. 14 also requires an update of the geometric stiffness matrix (see
Eq. (37) in Ref. 4), because of the time-dependent quantities Ai. Moreover, the final motion
equations no longer have a symmetric coefficient matrix (because of acceleration dependency of
the stiffening term), thereby making evaluation of accelerations computationally more costly.

To summarize, we believe that a description of the deformation field in terms of u, v, w
combined with the displacement formulation of the strain energy is the most accurate and

general approach. It does not require an approximation of foreshortening, nor the stress
state of the body--two critical advantages for applications to multibody systems. A definitive
statement on the efficiency of this approach and how it compares to, for instance, Banerjee and
Dickens' procedure can only be made through implementation of both methods. Moreover, we
would expect the relative efficiency of the two formulations to vary depending on the complexity
of the system and the number of elastic degrees of freedom in the model.

6 Concluding Remarks

In this paper, we presented an exposition of several approaches to model the geometric stiff-
ening effect for dynamics simulation of flexible-body systems. Our review included 11 papers
published in the period from 1973 to 1991. Although it does not represent a complete litera-
ture review of the works that have addressed this issue, it covers a wide range of formulations

developed for the problem.

In reviewing these works, we have idenitified two key characteristics of the different meth-
ods which allowed us to put forward a general classification for them. We have also established
the interrelationships between the various approaches, provided a number of clarifications and

new interpretations and offered our opinions on their benefits. It is hoped that this work will
contribute to a better understanding of the origin of geometric stiffening and how this effect
can be incorporated into the dynamics model of a flexible body undergoing large rigid-body
motion.
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